首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28025篇
  免费   4060篇
  国内免费   2204篇
化学   5199篇
晶体学   97篇
力学   4828篇
综合类   515篇
数学   11404篇
物理学   12246篇
  2024年   41篇
  2023年   296篇
  2022年   581篇
  2021年   763篇
  2020年   947篇
  2019年   799篇
  2018年   766篇
  2017年   1047篇
  2016年   1242篇
  2015年   907篇
  2014年   1483篇
  2013年   2222篇
  2012年   1587篇
  2011年   1863篇
  2010年   1586篇
  2009年   1888篇
  2008年   1760篇
  2007年   1802篇
  2006年   1502篇
  2005年   1375篇
  2004年   1259篇
  2003年   1081篇
  2002年   1031篇
  2001年   788篇
  2000年   719篇
  1999年   659篇
  1998年   595篇
  1997年   436篇
  1996年   382篇
  1995年   371篇
  1994年   344篇
  1993年   289篇
  1992年   256篇
  1991年   196篇
  1990年   172篇
  1989年   128篇
  1988年   128篇
  1987年   134篇
  1986年   111篇
  1985年   141篇
  1984年   141篇
  1983年   75篇
  1982年   102篇
  1981年   66篇
  1980年   36篇
  1979年   39篇
  1978年   31篇
  1977年   30篇
  1976年   16篇
  1973年   23篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
ABSTRACT

The article deals with the study of plane wave propagation in the thermoelastic medium in the presence of voids. The problem is considered in the context of three-phase-lag model of generalized thermoelasticity. There exists three longitudinal waves, namely elastic (E-mode), thermal (T-mode) and volume fraction (V-mode) in addition to transverse waves which get decoupled from the rest of motion and not affected by thermal and volume fraction fields. The fundamental solution of the system of differential equations in case of steady oscillations in terms of the elementary functions has been constructed. The phase velocity and attenuation coefficient of these waves are computed numerically and presented graphically.  相似文献   
72.
针对设计的喉径2mm、工作电流为100A的拉瓦尔喷嘴,在二维轴对称模型的基础上,对超音速等离子体炬中的流动及其外部射流进行了数值模拟。通过在阳极喷嘴内部采用基于磁矢量势的磁流体动力学模型,避免了对磁感应强度的复杂积分计算,得到了喷嘴内部多场耦合的结果及外部射流的流动状态,分析了喷嘴内部电磁场对等离子体的加速作用及射流发展过程。结果显示,等离子体经历了亚音速→跨音速→超音速的发展过程,最终获得2.3 Ma的超音速射流。研究结果为超音速等离子体炬的工业应用提供了理论基础。  相似文献   
73.
A study, involving kinetic measurements on the stopped‐flow and conventional UV/Vis timescales, ESI‐MS, NMR spectroscopy and DFT calculations, has been carried out to understand the mechanism of the reaction of [Mo3S4(acac)3(py)3][PF6] ([ 1 ]PF6; acac=acetylacetonate, py=pyridine) with two RC?CR alkynes (R=CH2OH (btd), COOH (adc)) in CH3CN. Both reactions show polyphasic kinetics, but experimental and computational data indicate that alkyne activation occurs in a single kinetic step through a concerted mechanism similar to that of organic [3+2] cycloaddition reactions, in this case through the interaction with one Mo(μ‐S)2 moiety of [ 1 ]+. The rate of this step is three orders of magnitude faster for adc than that for btd, and the products initially formed evolve in subsequent steps into compounds that result from substitution of py ligands or from reorganization to give species with different structures. Activation strain analysis of the [3+2] cycloaddition step reveals that the deformation of the two reactants has a small contribution to the difference in the computed activation barriers, which is mainly associated with the change in the extent of their interaction at the transition‐state structures. Subsequent frontier molecular orbital analysis shows that the carboxylic acid substituents on adc stabilize its HOMO and LUMO orbitals with respect to those on btd due to better electron‐withdrawing properties. As a result, the frontier molecular orbitals of the cluster and alkyne become closer in energy; this allows a stronger interaction.  相似文献   
74.
We revisit the Simha-Somcynsky model of polymer fluids with the purpose of developing novel theoretical and computational approaches to simplify and speed up its solution as well as the fitting of experimental data, and decrease its level of mathematical complexity. We report a novel method that allows us to solve one of the two equations of the model exactly, thus putting the level of mathematical difficulty on a par with the one of other models for polymer fluids. Moreover, we describe a computational algorithm capable of fitting all five parameters of the model in an unbiased way. The results obtained reproduce literature results and fit experimental pressure-volume-temperature and solubility parameter data for three polymers very accurately. Moreover, the new techniques allow for the investigation of the model at very low temperatures. Unexpectedly, the model predicts behaviors that could be interpreted as a glass transition, as routinely observed in dilatometry and differential scanning calorimetry, and a glass phase. We compared the predicted and experimental T g’s for cis poly(1,4-butadiene) and found an excellent quantitative agreement.  相似文献   
75.
《中国物理 B》2021,30(10):107304-107304
The field of two-dimensional topological semimetals, which emerged at the intersection of two-dimensional materials and topological materials, has been rapidly developing in recent years. In this article, we briefly review the progress in this field. Our focus is on the basic concepts and notions, in order to convey a coherent overview of the field. Some material examples are discussed to illustrate the concepts. We discuss the outstanding problems in the field that need to be addressed in future research.  相似文献   
76.
We extend the method of Pizzo multiscale analysis for resonances introduced in [5] in order to infer analytic properties of resonances and eigenvalues (and their eigenprojections) as well as estimates for the localization of the spectrum of dilated Hamiltonians and norm-bounds for the corresponding resolvent operators, in neighborhoods of resonances and eigenvalues. We apply our method to the massless Spin–Boson model assuming a slight infrared regularization. We prove that the resonance and the ground-state eigenvalue (and their eigenprojections) are analytic with respect to the dilation parameter and the coupling constant. Moreover, we prove that the spectrum of the dilated Spin–Boson Hamiltonian in the neighborhood of the resonance and the ground-state eigenvalue is localized in two cones in the complex plane with vertices at the location of the resonance and the ground-state eigenvalue, respectively. Additionally, we provide norm-estimates for the resolvent of the dilated Spin–Boson Hamiltonian near the resonance and the ground-state eigenvalue. The topic of analyticity of eigenvalues and resonances has let to several studies and advances in the past. However, to the best of our knowledge, this is the first time that it is addressed from the perspective of Pizzo multiscale analysis. Once the multiscale analysis is set up our method gives easy access to analyticity: Essentially, it amounts to proving it for isolated eigenvalues only and use that uniform limits of analytic functions are analytic. The type of spectral and resolvent estimates that we prove are needed to control the time evolution including the scattering regime. The latter will be demonstrated in a forthcoming publication. The introduced multiscale method to study spectral and resolvent estimates follows its own inductive scheme and is independent (and different) from the method we apply to construct resonances.  相似文献   
77.
Elastic scattering angular distributions and total reaction cross-sections of ~(7,10,11,12)Be projectiles are predicted by the systematic ~9 Be global phenomenological optical model potential for target mass numbers ranging from24 to 209. These predictions provide a detailed analysis by their comparison with the available experimental data.Furthermore, these elastic scattering observables are also predicted for some targets out of the mass number range.The results are in reasonable agreement with the existing experimental data, and they are presented in this study.  相似文献   
78.
《Physics letters. A》2019,383(23):2784-2788
By modifying the conventional one-electron hopping behavior, we study effects of an occupation-dependent hopping on the ground state of the half-filled one-dimensional pair-hopping model. At weak coupling, the use of bosonization and renormalization-group analysis techniques helps to derive the phase diagram. Such unusual hopping is shown to drive a spin-gap transition and to introduce a new region where the triplet superconducting instability dominates for positively small pair-hopping interaction.  相似文献   
79.
Flexible control of building blocks of photonic crystals enables achieving desirable band structures. Exploration of photonic band extrema has brought many fantastic features to design artificial optical materials, such as Brillouin‐zone‐corner extrema for valley photonic materials and zone‐center extremum for zero‐index metamaterials. However, two such kinds of extrema are always found independently in different photonic crystals. In this work, a kind of valley photonic crystals possessing both zone‐center and zone‐corner band extrema almost at the same frequency is proposed. Inspired by antennas theory, a three‐antenna array (TAA) source is devoted to individually manipulate each extremum. The correlation coefficient is given to determine the coupling efficiency between the TAA source and extrema eigenmodes. By using a source with a high correlation coefficient, these extrema bulk states are selectively excited consistent with their eigenfields. Furthermore, three control cases are shown that multiple extrema points are simultaneously excited, in order to confirm the validity of the correlation coefficient. Finally, a potential application of a beam‐steering device is proposed through selective excitation of ternary extrema. This work develops binary valley states into ternary mix states, rendering more degrees of freedom for on‐chip optical information transport, particularly for beam steering and mode division multiplexing.  相似文献   
80.
Electronic and optical properties of armchair stanene nanoribbons are studied within the sp3 tight-binding model including spin-orbit coupling in the presence of in-plane electric field. Electric field strongly modulates energy dispersions leading to a zero-gap transition, shift in edge-states, and exhibition of spin-splitting states. Then, the complex dielectric functions in the long wavelength limit is calculated from the gradient approximation. More field-induced transition channels exhibit richer optical spectra which further reveal spin-polarized feature at low frequency. Prominent plasmons in loss spectra come from πσ mixing orbital. The plasmon peak frequency and height are tuned by field strength. Also, the threshold plasmon frequency linearly decreases as electric field increases and it vanishes at critical field. The reflectance exhibits oscillatory behaviors and shows dip structures with sharp plasmon edge, undergoing a red-shift with increasing field. The calculated results fully show that field-modulations of electronic and optical properties strongly depend on nanoribbon's geometry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号